

FRAUNHOFER INSTITUTE FOR INTEGRATED CIRCUITS IIS

1 HallinSight[®] sensor array for in-plane vectorial magnetic measurements © Fraunhofer IIS / Philip Beran

HallinSight[®] – VECTORIAL MAGNETIC FIELD IMAGING

Making the invisible visible – with three dimensional visualization of magnetic fields. HallinSight® stands for precise vectorial magnetic measurements with capabilities of highly flexible adaption to different requirements and applications like permanent magnet characterization and inspection of magnetic components.

Fraunhofer Institute for Integrated Circuits IIS

Management of the institute Prof. Dr.-Ing. Albert Heuberger (executive) Dr.-Ing. Bernhard Grill

Am Wolfsmantel 33 91058 Erlangen, Germany

Contact Philip Beran Phone: +49 9131 776-4471 hallinsight@iis.fraunhofer.de

www.iis.fraunhofer.de/hallinsight

Unique Vectorial Measurement

The HallinSight[®] vectorial magnetic field imaging technology enables measuring all three dimensions of magnetic fields in real time. The magnetic field vector can be dissolved with a magnetic resolution in the range of µT at a rate up to 1000 measurements per second.

In form of a planar array, the technology can be fabricated as a magnetic field camera and be used for characterization of static or dynamic magnetic fields. The high flexibility of the HallinSight[®] technology makes it feasible to measure magnetic fields along a line or in-plane as well as within a spatial volume.

Different communication interfaces are available for integration in existing environments for laboratorial and industrial setups.

Applications

- Quality control in magnet fabrication
- Detection of defects in magnetic materials (e.g. cracks, cavities)
- Permanent magnet characterization (field strength, magnetization)
- Non-destructive material testing (magnetic back-bias)
- Multi-dimensional position measurements
- Metering of magnetic fields with high dynamics (e.g. gradient fields)
- Detection of hidden electric currents (e.g. solar panels)
- Visualization of static or alternating magnetic fields (e.g. motors, coils)

 2 Measurement result of multiple rare-earth magnets
 © Fraunhofer IIS / Philip Beran

3 Different available sensor
 geometries and layouts
 © Fraunhofer IIS / Philip Beran

Our services

- Off the shelf designs (single probes, linear and planar arrays)
- Adaption of measurement range
- Adaption of measurement rate
- Customized geometric dimensions and layout
- Combination with multi-dimensional position algorithms
- Customized algorithms for analysis of measurement results
- User-specific communication protocols
- 3D Helmholtz coils for calibration of magnetic systems

Technical specifications

- Resolution 16 μT (no avg.)
- Magnetic field range 0 ... ± 100 mT (typ.)
- Noise 30 μT RMS (no avg.)
- Measurement rate up to 1000 Hz
- Operating temperature10° C ... 30° C
- Absolute offset error < 25 μ T (typ.)
- Absolute gain error < 0.5% (typ.)
- Orthogonality error < 0.5°
- Lateral geometric position error < 80 μ m
- Vertical geometric position error < 20 μm

Features

- True 3D magnetic field measurement (vectorial)
- Integrated temperature sensor
- Magnetic calibration of complete measurement system
- Ready-to-use with USB interface
- LabVIEW software for visualization and analysis
- LabVIEW library for integration in existing measurement setups
- Space-resolved measurement in a 2.5 mm grid
- Interpolation algorithms for higher resolution
- Measuring distance to active sensor area < 0.5 mm
- Magnetically neutral measurement area
- Communication per USB or serial ASCII protocol

Optional features

- Measurement range up to 4 T
- Measurement rate up to 10 kHz
- Extended temperature range
 -40° C ... 125° C
- Low construction height (< 1.5 mm)
- Additional algorithms for magnet characterization
- Customized interfaces