Forschungsfabrik Mikroelektronik Deutschland

Fraunhofer Group for Microelectronics in Cooperation with Leibniz Institutes FBH and IHP

Photonics for the Internet and Datacenter

Martin Schell, Fraunhofer HHI

Fraunhofer

HHI's origin: Long Reach (~100s-1000s km) Telecom

Traffic growth 40% to 60% p.a. since a couple of decades

Small market sizes of 100.000s pcs p.a. worldwide

Optochip performance is paramount

A cooperation of

Long Reach: Dispersion is our Challenge ... and problems grow quadratically with speed

At fiber input, 1 bit is ~ 1 cm long ...

... at output, it has smeared out to ~ 1 m and overlaps with 100 others

A cooperation of

Fraunhofer

MIKROELEKTRONIK

Fourier transforming allows for Compensation but Requires Detecting Phase and Amplitude

$$FFT => e^{iD\omega^2} => IFFT$$

InP monolithic QPSK receiver

InP monolithic QPSK receiver - Phase difference of input signals determines output ports

HHI's target: Intra Datacenter

A cooperation of

In Datacenters, 'normal' Lasers Compete Well: One single 3" InP Laser wafer can transport the internet

White paper **Cisco public**

cisco

The Zettabyte Era: Trends and Analysis

June 2017

"Annual global IP traffic will reach 3.3 ZB per year by 2021, In 2016, the annual runrate ... was 1.2 ZB per year"

500μm x 400μm

About 20.000 chips per 3" wafer, 56 GBit/chip

A single InP 3" Wafer can support 3 ZB/year

A cooperation of

Single Laser supports 100 Gb/s on/off

Farer future: Optical Switch Matrices 1.6 Mio Cores to be Connected

SOA Integration into Active Photonic Switches

Conceptual cross-section:

Topological view:

Th3F.5.pdf OFC 2016 © OSA 2016

A Gain-Integrated Silicon Photonic Carrier with SOA-Array for Scalable Optical Switch Fabrics

L. Schares⁽¹⁾, T. N. Huynh⁽¹⁾, M. G. Wood^(1,2), R. Budd⁽¹⁾, F. Doany⁽¹⁾, D. Kuchta⁽¹⁾, N. Dupuis⁽¹⁾, B. G. Lee⁽¹⁾, C. L. Schow⁽³⁾, M. Moehrle⁽⁴⁾, A. Sigmund⁽⁴⁾, W. Rehbein⁽⁴⁾, T. Y. Liow⁽⁵⁾, L. W. Luo⁽⁵⁾, G. Q. Lo⁽⁵⁾

- (1) IBM Watson Research Center, Yorktown Heights NY, USA. Email: schares@us.ibm.com. (2) The Ohio State Univ., Columbus, OH, USA.
- (3) Univ. of California, Santa Barbara, CA, USA. (4) Fraunhofer HHI, Berlin, Germany. (5) A*STAR Institute of Microelectronics, Singapore.

Abstract: We built a 4-channel photonic carrier with input/output SiN waveguides and a flip-chip-attached SOA array, incorporating end-to-end reflection-management and mode-matching. All channels demonstrate fiber-to-fiber gain of >10dB and support error-free 4-λ x 25-Gb/s WDM links. **OCIS codes:** (200.0200) Optics in computing; (230.4480) Optical Amplifiers; (200.4650) Optical interconnects

Fig.1. Left: SOA / photonic substrate integration test vehicle. Center: Assembled carrier with SOA embedded in optical underfill. Right: SEM image of cross-sectioned assembly showing the index matching epoxy between SOA and SiN waveguides.

Adopt foundry model widely used with Silicon ICs to InP PICs

Like Electronics: Make Building Blocks, Separate Design from Process

Silicon ICs ~1979

InP Photonic ICs ~2014

PIC Examples From Fraunhofer HHI Fab

WDM receiver for FTTH (Genexis)

AWG-based harmonic mode-locked laser (Chinese Acad. of Sciences)

Multi-Wavelength transmitter (Scuola Superiore Sant´Anna)

FBG-readout (Fibresensing)

Integrated Tunable Filter (EU Commander)

5Gb/s Optical Flip-Flop Chip (Uni Thessaloniki)

Optical frequency discriminator (U Valencia/VLC)

Photonic integrated interrogator for fiber-optic sensor networks (Uni Warsaw)

Summary

InP Optochips for all communication needs – long reach to intra-datacenter

Current focus on TOR connections 500 m – 2 km

Small chip size gives volume capability even to 3" fab

Eye-safe 1.3µm..1.5µm LIDAR

Proven history in transfering ideas from TRL1 to TRL9

One of the three wordwide accessible InP Photonic Integrated Circuits foundries

Your Contact

Martin Schell

Executive Director Fraunhofer HHI

martin.schell@hhi.fraunhofer.de

