Forschungsfabrik Mikroelektronik Deutschland

Fraunhofer Group for Microelectronics in Cooperation with Leibniz Institutes FBH and IHP
Photonics for the Internet and Datacenter

Martin Schell, Fraunhofer HHI
HHI’s origin: Long Reach (~100s-1000s km) Telecom

Traffic growth 40% to 60% p.a. since a couple of decades

Small market sizes of 100,000s pcs p.a. worldwide

Optochip performance is paramount
Long Reach: Dispersion is our Challenge … and problems grow quadratically with speed

At fiber input, 1 bit is
~ 1 cm long …

… at output, it has smeared out to ~ 1 m and overlaps with 100 others
Fourier transforming allows for Compensation but Requires Detecting Phase and Amplitude.

\[\text{FFT} \Rightarrow e^{iD\omega^2} \Rightarrow \text{IFFT} \]
InP monolithic QPSK receiver

\[\text{λ-DFB} \rightarrow 90° \text{ Hybrid} \rightarrow 0° \quad 90° \quad 180° \quad 270° \]

50G balanced PD
50G pre amp

demux/ clock rec.

InP monolithically integrated
InP monolithic QPSK receiver - Phase difference of input signals determines output ports

\[\Delta \phi = 0\text{deg} \]

\[\Delta \phi = 180\text{deg} \]

\[\Delta \phi = 90\text{deg} \]

\[\Delta \phi = 270\text{deg} \]
HHI’s target: Intra Datacenter
In Datacenters, ‘normal’ Lasers Compete Well: One single 3” InP Laser wafer can transport the internet

“Annual global IP traffic will reach 3.3 ZB per year by 2021, … . In 2016, the annual runrate … was 1.2 ZB per year”

About 20,000 chips per 3” wafer, 56 GBit/chip
A single InP 3” Wafer can support 3 ZB/year
Single Laser supports 100 Gb/s on/off

100Gb/s Optical Signal

10km
Farer future: Optical Switch Matrices
1.6 Mio Cores to be Connected

620,000 VCSELs/fibers
SOA Integration into Active Photonic Switches

Conceptual cross-section:

Topological view:
A Gain-Integrated Silicon Photonic Carrier with SOA-Array for Scalable Optical Switch Fabrics

(1) IBM – Watson Research Center, Yorktown Heights NY, USA. Email: schares@us.ibm.com. (2) The Ohio State Univ., Columbus, OH, USA. (3) Univ. of California, Santa Barbara, CA, USA. (4) Fraunhofer HHI, Berlin, Germany. (5) A*STAR – Institute of Microelectronics, Singapore.

Abstract: We built a 4-channel photonic carrier with input/output SiN waveguides and a flip-chip-attached SOA array, incorporating end-to-end reflection-management and mode-matching. All channels demonstrate fiber-to-fiber gain of >10dB and support error-free 4-λ x 25-Gb/s WDM links.

OCIS codes: (200.0200) Optics in computing; (230.4480) Optical Amplifiers; (200.4650) Optical interconnects

Fig.1. Left: SOA / photonic substrate integration test vehicle. Center: Assembled carrier with SOA embedded in optical underfill. Right: SEM image of cross-sectioned assembly showing the index matching epoxy between SOA and SiN waveguides.
Adopt foundry model widely used with Silicon ICs to InP PICs
Like Electronics: Make Building Blocks, Separate Design from Process

Silicon ICs ~1979

InP Photonic ICs ~2014
PIC Examples From Fraunhofer HHI Fab

- WDM receiver for FTTH (Genexis)
- AWG-based harmonic mode-locked laser (Chinese Acad. of Sciences)
- Multi-Wavelength transmitter (Scuola Superiore Sant’Anna)
- FBG-readout (Fibresensing)

- Integrated Tunable Filter (EU Commander)
- 5Gb/s Optical Flip-Flop Chip (Uni Thessaloniki)
- Optical frequency discriminator (U Valencia/VLC)
- Photonic integrated interrogator for fiber-optic sensor networks (Uni Warsaw)
Summary

InP Optochips for all communication needs – long reach to intra-datacenter

Current focus on TOR connections 500 m – 2 km

Small chip size gives volume capability even to 3” fab

Eye-safe 1.3µm...1.5µm LIDAR

Proven history in transferring ideas from TRL1 to TRL9

One of the three worldwide accessible InP Photonic Integrated Circuits foundries
Your Contact

Martin Schell

Executive Director Fraunhofer HHI

martin.schell@hhi.fraunhofer.de